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Abstract
The problem of imposing a set of correlations, C, of any order, C =
{C1, C23, C145, . . .}, on binary sequences is addressed. The entropy of infinitely
long sequences obeying such a given set was calculated in previous works using
the saddle-point method, and it was observed that a finite fraction of sets are
characterized by a non-extensive entropy. In this paper, the region of finite
entropy, the allowed region of sets of correlations, is found to be a convex
hyper-polygon in the space of correlation-sets, using the Simplex algorithm.
Outside of this region the Simplex solution indicates that sequences obeying the
correlations cannot be found; therefore, the entropy is −∞. In particular, the
boundaries of the allowed region for {C1, Cm} are presented. At the boundaries,
the entropy drops in a first-order phase transition fashion, and this drop can
be explained from a combinatorial point of view. Finally, we observe that the
fraction of the volume occupied by allowed correlation-sets drops exponentially
with the number of correlations imposed, and a qualitative explanation of this
scaling phenomenon is provided.

PACS numbers: 65.40.Gr, 05.20.−y, 87.10.+e

1. Introduction: correlation-sets

Autocorrelation, a cross-correlation of a sequence with itself, and correlated sequences are of
great interest in a variety of fields, for example economics [1], biology [2], physiology [3] and
digital communication [4]. Efforts usually focus on identifying the correlations typical of a
process, such as correlations in the quotes of a stock in the stock market [1], or autocorrelated
noise over a communication channel [4]. Alternatively, one may attempt to relate a certain
correlation type to a behaviour of a system, such as long-range correlations in heartbeats of
an ill individual [3], or autocorrelations within coding or non-coding DNA sections [2]. In
this paper, we address the subject from a different perspective: we analyse the consequence
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of imposing a set of constraints, in the form of autocorrelations, on a binary sequence. We
calculate the entropy of the ensemble of all sequences obeying a given set of correlations.
We show that choosing a specific set of correlations is not arbitrarily free, but the space of
correlation-sets can actually be divided into allowed and restricted regions. In the allowed
region, the entropy of sequences obeying the correlation-set is an extensive quantity, while
in the surrounding restricted regions the entropy is −∞; therefore, no sequence obeying the
constraints can be found. We map the boundaries of the allowed region, and show that it is a
convex region, forming a hyper-polygon in the correlation-set space.

Autocorrelations can appear in the simple form of two-point correlations [5]

Cm = 1

L

L∑
i=1

xix(i+m) mod L, (1)

where L is the length of the binary vector, xi ∈ ±1,m is the correlation distance and we
assume periodic boundary conditions. In the general form, high-order correlations are given
by

Cm1,m2,...,m = 1

L

L∑
i=1

xi

∏
j=m1,m2,...,m

x(i+j) mod L (2)

which is a measure of the correlation of an element with successive elements located at
distances m1,m2, . . . , m apart from it, and m being the maximal correlation distance taken
(m1,m2, . . . � m). For a given m, the total number of possible different autocorrelations is
2m. For m = 2, for instance, there are only four possible correlations, C0, C1, C2 and C12, and
for m = 3 there are eight possible different correlations, C0, C1, C2, C3, C12, C13, C23, C123

(C0 is simply the bias of the sequence: C0 = 1
L

∑L
1 xi).

Let a correlation-set, C, be a collection of some high-order correlations. Think of
each element of C as a base vector in a vector space, the correlation-set space. The
dimensionality d of the correlation-set space is determined by the cardinality of C, and every
specific set (e.g., {C1 = −0.3, C14 = 0.2, . . .}) is a point in this space. Since by definition
−1 � Cm1,m2,...,m � 1, the volume of this space is simply V = 2d .

We raise the following questions regarding the correlation-set space: is there a way to
estimate the number of sequences obeying the constraints of a given point in this space? And
are there correlation-sets representing contradicting constraints that cannot co-exist? In other
words, what is the entropy of a point in a correlation-set space, and do correlation-sets with
entropy equal to −∞ exist1.

An answer to the first question is given in section 2. Using the statistical-physics technique
of the transfer matrix, the entropy of a point in a given correlation-set space is calculated.
However, we observe that this method does not provide a solution for every point in the
space, corresponding to points with zero entropy, or may be a consequence of numerical
precision problems. In sections 3 and 4, the problem is reformulated in terms of constraining
marginal probabilities on short blocks, and the Simplex algorithm [6] is applied for solving
this problem. The Simplex method answers the second question in the affirmative. All
points of non-zero entropy are located within an allowed region, which is a polygon-like
convex region in the correlation-set space. Outside this region, no sequences obeying the
constraints exist, and the entropy is −∞. Section 5 provides detailed results for the cases

1 We remark that two main differences distinct the correlation-set problem from the well-known K-SAT problem
[15, 16]: (1) K-SAT is mapped onto highly diluted infinite-ranged frustrated systems, while our system is a one-
dimensional system with finite-range interactions. (2) In our system there is a finite number of global constraints,
while in K-SAT, there is an extensive number of local constrains.
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C = {C1, Cm} and C = {C1, C2, . . . , Cm}, indicating that the volume of the allowed region
exponentially decays with the number of constraints imposed, and we support it by a qualitative
explanation. Concluding remarks are given in section 6, followed by the appendices, describing
a combinatorial method for constructing the boundaries of the allowed region and a proof of
convexity.

2. Calculating the entropy of correlated sequences

In this section, the method of finding the entropy (per bit) of the ensemble of sequences obeying
a set of autocorrelations is briefly described. We repeat our calculations from recent papers
[7] and references therein. For the sake of clarity of notation, we focus on two-point
correlations only, considering the set of all such correlations up to the order m : C =
{C1, C2, . . . , Cm} (in practice we can only deal with m < 10 due to computational limitations).
Extending to high-order correlations is straightforward, and is presented in [8]. Let �(C)

denote the number of sequences of length L obeying the set C. Assuming periodic
boundary conditions, and representing each two-point correlation constraint as a delta function,
δ
( ∑L

i=1 xixi+k − LCk

)
, (1 � k � m), one obtains

�(C) = Tr{xi=±1}
m∏

k=1

δ

(
L∑

i=1

xixi+k − LCk

)
. (3)

Using the integral representation of the delta functions, equation (3) can be written as

�(C) = Tr{xi=±1}
m∏

k=1

∫ i∞

−i∞
exp

{
yk

(
L∑

i=1

xixi+k − LCk

)}
dyk. (4)

Since the Trace is over xi and the integrations are over yk , equation (4) can be rearranged to

�(C) =
∫

. . .

∫
e−L

∑m
k=1 Ck ·yk × Tr{xi=±1}

L∏
i=1

exp

(
m∑

k=1

yk · xixi+k

)
dy1 . . . dym. (5)

The term inside the Trace represents the interactions (according to C ) of each element, xi , in
the sequence. Since the maximal correlation length is bounded, k � m, one can group the
sequence into L/m blocks of size m, and apply the transfer matrix method [9] (of dimensions
2m ×2m) for representing all the interactions among the 2m elements in two successive blocks.
In the leading order, one finds

�(C) ≈
∫

. . .

∫
exp

(
−L

[
m∑

k=1

Ckyk − 1

m
ln λmax(y1 . . . ym)

])
dy1 . . . dym, (6)

where λmax(y1 . . . ym) is the maximal eigenvalue of the corresponding transfer matrix. For
large L,� can be found using the saddle-point method. Denoting by y∗

1 , . . . , y∗
m the solutions

of the saddle point (i.e., y’s of the extremum, minimizing the exponent term in (6)), the binary
entropy2, H2(C), is given in the leading order by3:

H2(C) = 1

ln 2

[
1

m
ln λmax(y

∗
1 . . . y∗

m) −
m∑

k=1

y∗
k Ck

]
. (7)

2 We choose to report the binary entropy, H2 = log2(�(C)), rather than the natural logarithm in order to comply
with the information theory literature notation.
3 The numerical solution of the saddle-point equation was preformed using Powell’s algorithm for minimization in
high dimensions, available from numerical recipes at http://www.library.cornell.edu/nr/bookcpdf/c10-5.pdf.

http://www.library.cornell.edu/nr/bookcpdf/c10-5.pdf
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Figure 1. The correlation-set space for C = {C1, C2}. The allowed region is C2 � 2|C1| − 1
(thick line). Iso-entropy lines (thin line), and the C2 = C2

1 line (dashed line) are presented. Inset:
the entropy as a function of C1 for C2 = 0. This cross-section demonstrates the sharp drop in the
entropy at the point C1 = 0.5.

Table 1. Entropy, H2, and saddle point solutions, y∗, near the boundary of the allowed region for
C = {C1, C2}. Note the divergence of |y1| and |y2| at the boundary.

c1 c2 y1 y2 H2

0.6 0.22 1.705 −0.633 0.675
0.58 0.2 1.376 −0.479 0.703
0.6 0.2 8.801 −4.198 0.64
0.62 0.2 − − No solution
0.6 0.18 − − No solution

By surveying, for instance, the correlation-set space C = {C1, C2}, it was observed [7]
(and references therein) that a solution for the saddle point, equation (7), can be found only in
the region

C2 � 2|C1| − 1. (8)

At the boundary of this region, C2 = 2|C1| − 1, the parameters {|y∗|} diverge, and the
entropy drops to zero in a first-order phase transition fashion. In table 1 results around the
point C1 = 0.6, C2 = 0.2 are reported. In figure 1, the correlation space for C = {C1, C2}
is presented, together with iso-entropy lines, and the line C2 = C2

1 , representing the most
probable C2 for a given C1.

3. From ensembles of sequences to marginal probabilities of short blocks

The limited results presented in the previous section, obtained from the numerical solutions
of the saddle point equations, suffer from the following limitations: (a) finding the boundaries
of the allowed region for a set C = {Cm1,m2,...,m} is very sensitive to the numerical precision,
since on the boundary the interactions diverge; (b) the extension of the saddle-point method
to many dimensions (i.e., increasing the number of correlations in the set), or even to large
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m with only two-point correlations, is a very heavy numerical task because the saddle-point
method requires repeatedly finding the maximal eigenvalue of a 2m × 2m transfer matrix;
(c) the question of whether out of the space with a finite entropy, there are a finite or infinite
number of sequences (for instance e

√
L) obeying the set of correlations cannot be answered

using the saddle-point method; (d) it is unclear whether the available space consists of a
connected region.

To overcome these difficulties in the following section, we show how the allowed region
of a correlation-set can be mapped using the Simplex algorithm, but first we draw a conceptual
connection between the ensemble of all the (finite or infinitely long) sequences obeying a
given set of correlations C, and marginal probabilities of short blocks.

We term a short section of the sequence that contains N binary elements, a block of
length N. Let P(± · · · ±) be the marginal probability of a certain internal representation of
a block. For N = 4, for instance, P(+ + −+) is the probability of finding the subsequence
+, +,−, + in the ensemble of all the binary sequences obeying C. Let i be a running index
over the 2N configurations and Pi be the marginal probability of the configuration i. Since
the correlations are defined with periodic boundary conditions, if a given sequence is included
in the ensemble, then all the cyclic permutations of that sequence will also be included. Pi

is therefore independent of the specific location of the block along the sequence. In other
words, sampling blocks from different locations yield the same marginal distribution of Pi .
Hence, instead of treating long sequences obeying a set C, we can discuss short blocks and the
marginal probabilities that induce the desired correlations. In the following section we show
how this problem can be solved by the Simplex algorithm.

4. Determine the allowed region using the Simplex algorithm

The Simplex algorithm [6] is a method for solving problems in linear programming. Linear
programming (LP) problems are optimization problems in which the objective function (the
function to be minimized or maximized, also called the target function) and the constraints
(equalities and inequalities) are all linear. This method, invented by G B Dantzig in 1947 [10],
runs along polytope edges of the visualization solid to find the best answer. The algorithm’s
complexity is considered to be polynomial in the number of parameters or constraints for
every practical use (although rare cases with exponential complexity were demonstrated [11]).
Further information on the LP and the Simplex algorithm can be found in [12–14].

Using the marginal probabilities as variables, we can write linear equalities and
inequalities as constraints and an additional linear target function. The target function is
the correlation we want to maximize (or minimize). The method is first demonstrated for the
simple case of C = {C1, C2}.

4.1. Imposing C = {C1, C2} constraints

Following the methodology of the transfer matrix, having m = 2, let us concentrate on a block
of N = 4 successive binary variables S1, S2, S3, S4, where Sk = ±1.

The number of possible configurations for this block is 2N = 16.

4.1.1. Constraining Pi to be legitimate probabilities. In order to ensure that the variables Pi

have proper values as probabilities, they should obey

∀i 0 � Pi � 1 (9)
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and
16∑
i=1

Pi = 1. (10)

However, the Simplex method deals only with non-negative variables therefore the condition
in equation (10) immediately implies that ∀iPi � 1, rendering equation (9) unnecessary.

4.1.2. Implying the correlation constraints. Following the discussion in section 3, we demand
that the average over every two successive binary elements is equal to C1. We therefore sum
the probabilities of all configurations where S1 = S2 and subtract the probabilities of all
configurations where S1 �= S2.

Implying the constraint C1 on the binary elements S1 and S2 yields the following equation4,
16∑
i=1

Pif1,2(i) = C1, (11)

where fk,k+l (i) is an indicator function; fk,k+l (i) = 1 when i is a configuration with both
elements (Sk and Sk+l) having the same sign, and fk,k+l (i) = −1 when the elements have
opposite signs.

Similarly, for elements S2 and S3, and for elements S3 and S4,
16∑
i=1

Pif2,3(i) = C1 (12)

16∑
i=1

Pif3,4(i) = C1. (13)

Our target parameter is C2 (our goal is to find the min/max C2 for a given C1). By adding
the probabilities of all configurations where S1 = S3 and subtracting the probabilities of all
configurations where S1 �= S3, we find for the elements S1 and S3

16∑
i=1

Pif1,3(i) = C2. (14)

Similarly, for elements S2 and S4
16∑
i=1

Pif2,4(i) = C2. (15)

Since the Simplex algorithm only treats one target function, we use one of these last two
equations as a target function (e.g., equation (14)), and the other equation as an additional
constraint, which demands that C2 between elements S1 and S3 is equal to C2 between elements
S2 and S4. Solving these equations for a given C1 with the Simplex method results in the
maximal/minimal C2, which complies with all the constraints.

4.2. Imposing {C1, Cm} constraints

Implementing the previous example to the more general case of the set {C1, Cm} is fairly
straightforward. The equations are very similar to the former {C1, C2} case. Again we use
blocks with size N = 2m, but as m is larger, the length of the block increases. The number of
equations for C1 becomes N − 1, and the number of equations for Cm becomes (N − m), out
of which one becomes the target function and the rest are constraints.
4 The explicit form of equation (11): [P(−−++) + P(−−+−) + P(−−−+) + P(−−−−) + P(++++) + P(+++−) + P(++−+) +
P(++−−)] − [P(−+++) + P(−++−) + P(−+−+) + P(−+−−) + P(+−++) + P(+−+−) + P(+−−+) + P(+−−−)] = C1.
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4.3. The general case of two-point correlations: C = {C1, C2, . . . , Cm}
The most general case of two-point correlations is the case of the set {C1, C2, . . . , Cm}.
Assuming that the allowed region of {C1, C2, . . . , Cm−1} is already mapped, our next step is
to find the max/min Cm for each of the allowed points in the (m − 1) space. Again, following
the methodology of the transfer matrix, we take as block size N = 2m.

For every l < m, for all element-pairs l sites apart, we enforce a constraint Cl

∀l < m ∀k � N − l

2N∑
i=1

Pifk,k+l (i) = Cl. (16)

For each correlation Cl we have (N − l) pairs, and therefore (N − l) equations.
Summing over all l < m, we find that the number of equations for correlation constraints
is [(N − 1) + (N − (m − 1))](m − 1)/2.

The Cm constraint is represented by (N − m) equations

∀k � N − m

2N∑
i=1

Pifk,k+m(i) = Cm. (17)

As before, one of the (N − m) equations becomes the target function, and we set the rest as
additional constraints. In total there are 2N variables and the number of equations is

(2N − m)(m − 1)/2 + N − m − 1 (18)

plus one target function.

5. Results

5.1. A pair of two-point correlations, C = {C1, Cm}
The allowed region in the C = {C1, C2} space is a head-down isosceles triangle (equation (8),
figure 1) defined by

C2 � 2|C1| − 1.

For C = {C1, C3}, we found that the allowed region is a parallelogram (figure 2), formed
by the lines

3C1 − 2 � C3 � 3C1 + 2.

From the solutions up to m � 7 and from the argument given in appendix A, we discovered a
simple generic behaviour for a pair of two correlations C1 and Cm

Cm � m|C1| + (1 − m), for even m

mC1 − (m − 1) � Cm � mC1 + (m − 1), for odd m
(19)

(bearing in mind that by definition |Cl| � 1 ∀l). In figure 2, the allowed regions of
C = {C1, Cm} for m = 2, . . . , 7 are presented. An explanation for this generic behaviour
from combinatorial considerations is given in appendix A. Note that for the either case, the
area of the allowed region covers a fraction

(
1 − 1

m

)
of the entire 2 × 2 space.
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Figure 2. Allowed region in sets of C = {C1, Cm}, for m = 2, . . . , 7.
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Figure 3. The fraction of the allowed volume, Vallowed/2m versus the number of two-point
constraints imposed. The line represents the best fit Vallowed/2m = 2.849 exp{−0.8667m}.

5.2. The allowed region for C = {C1, C2, . . . , Cm}
We find that imposing a series of ever growing constraints in the form of two-point correlations
C = {C1, C2}, C = {C1, C2, C3} · · · C = {C1, C2, . . . , Cm} results in a complicated-shaped,
convex polytope of the allowed region in the m-dimensional space. The proof of convexity
is given in appendix B. The fraction of volume occupied by the allowed region, Vallowed/2m,
decays as m increases (constraints are added). In figure 3, the fraction of the allowed volume
is plotted versus the maximal correlation length taken, m, and it appears to fit very well with
an exponential decay.

This observation can be qualitatively supported by the following theoretical argument5.
As reported above, the allowed region for a pair of two-point correlations, C = {C1, Cm}
occupies 1 − (1/m) of the volume. In the limit of large m we make two assumptions: first,
we treat the overall constraint as a combination of independent pair constraints, taking into

5 The calculated allowed fraction (figure 3) slightly differs from the theoretical argument (e−0.8667m/2 instead of
e−m/2). Note that the theoretical argument relies both on the results for {C1, Cm}, and some general position
assumptions, and therefore, reveals the qualitative scaling behaviour. However, the prefactors cannot be precisely
calculated based on those assumptions.



Possible sets of autocorrelations 4169

account all m(m − 1)/2 possible pairs. This assumption can rely on the general position
argument in high dimensions. Second, we assume that the allowed fraction of volume of a
typical pair is 1 − O

(
1
m

)
in the large m limit. Under these assumptions, the allowed region

should roughly be

Vallowed

2m
≈ (1 − (1/m))m·(m−1)/2

and in the m → ∞ limit
Vallowed

2m
≈ e−m/2. (20)

6. Conclusions

In this work we addressed the problem of imposing a set of correlations on binary sequences.
A correlation, say Cm, is a macroscopic consequence of microscopic interaction among lattice
sites located m sites apart. These interactions, as well as the entropy of the system, can be
evaluated by the transfer matrix method. We observed that choosing a correlation-set is not
arbitrarily free, but limited to an allowed region in the correlation-set space, out of which the
saddle-point equations cannot be solved. The transfer matrix method suffers from numerical
inaccuracy near the boundaries, and becomes a heavy computational task when the correlation
length increases. Using the Simplex algorithm, we managed to circumvent these difficulties.
The Simplex solution has the following benefits over the statistical mechanics approach:

• Using the Simplex method, exact expressions for the boundaries of the region can be
found with no numerical imprecision, and with affordable complexity.

• It is obvious from the Simplex solution that outside the allowed region no sequence exists
(which is not clear from the saddle-point solution).

• The Simplex solution indicates that the allowed region is convex (any point on a line
between two allowed points is an allowed point). A proof of convexity is given in
appendix B.

• The allowed region found by the Simplex algorithm is valid also for finite sequences.

The volume of the allowed region decays exponentially with the number of correlations
imposed, an observation that is supported by an argument in high dimensions.

The findings reported here have practical application in the design of a digital
communication system for correlated sequences over noisy channels [7, 8] (and references
therein), and we anticipate further applications in various fields.

Appendix A. The allowed region for the set C = {C1, Cm}-combinatorial perspective

For the simple case of a 2D correlation-set C = {C1, Cm} described in section (5.1), the
boundary line can be found from combinatorial arguments by considering a long (but finite!)
sequence. Note that for finite sequences of length L, correlations are discrete rather than
continuous, with 4

L
intervals. Consequently, the allowed region becomes a dotted grid of

allowed points (smeared to a continuous volume in the limit L → ∞). As an example, we
will explore the right-hand boundary C4 = 4C1 − 3 of the set C = {C1, C4} (see figure 4).
Application to the other boundary or to different m is straightforward.

At the top right of the region, C1 = C4 = 1, only the homogenous sequences (+ + · · · + +)

or (− − · · · − −) comply with the constraint (the entropy is log2(2)). By flipping any single
element, say (+ + · · · + − + · · · +), one obtains the set

{
C1 = 1 − 4

L
, C4 = 1 − 4

L

}
(with the
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Figure 4. Illustration of possible sequences on the boundary of the allowed region for the
correlation-set C = {C1, C4}. Each dot marks a possible set, the dotted line marks the boundary
of the allowed region for infinite sequences, C4 = 4C1 − 3.

entropy log2(L)). In an attempt to reconstruct the boundary line, we further flip elements in a
manner that will reduce C4 and retain the maximal C1. This can be achieved by flipping one of
the neighbouring elements: (++ · · ·+−−+ · · · +), resulting in unchanged C1 and C4 = 1− 8

L
.

This process can continue for two more elements, resulting in (+ + · · · + − − − − + · · · +)

with C1 = 1 − 4
L
, C4 = 1 − 16

L
, for which the boundary relation, C4 = 4C1 − 3 is recovered,

as demonstrated in figure 4. However, flipping another adjacent element will not decrease C4

any further (in fact, all the sequences with two ‘walls’ and the cluster size larger than 3 belong
to the same {C1, C4} set). In order to further decrease C4, one should flip an element at least
four sites apart from the inverted cluster: (+ + · · · + − + + + + − − − − + · · · +). Eventually,
the sequence (+ + + + − − − − + + + + − − − − · · ·), with C1 = 3

4 , C4 = −1 represents the
bottom-right point of the region.

Appendix B. Proving convexity for the allowed region

The main idea is that one can verify that the set of equalities (such as equations (16) and (17))
can be written in a matrix representation in the following form:

MP = C (B.1)

where M is a matrix with elements ±1, P represents the marginal probabilities Pi , and C

represents the desired correlations and the normalization constant. The inequalities force the
probabilities into the range [0 : 1]. In order to show convexity we should prove that any point
which lies on the line between two ‘allowed’ points is also ‘allowed’. Let Cα and Cβ be two
‘allowed’ points obeying the following equations:

MPα = Cα MPβ = Cβ (B.2)

where Pα and Pβ are two sets of probabilities solving equation (B.2). A point between Cα and
Cβ can be written as Cγ = λCα + (1 − λ)Cβ , where 0 � λ � 1.
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Clearly

MPγ = Cγ , (B.3)

where Pγ ≡ λPα + (1 − λ)Pβ . Since 0 � λ � 1, Pγ is a proper set of probabilities yielding
the desired set of autocorrelations. Hence, the ‘allowed’ region is convex.
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